PARSE TREES AND PARSING

Derivations and Parse trees

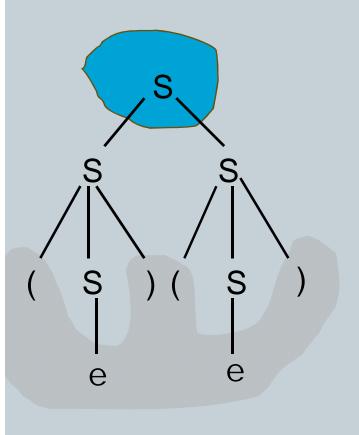
- G: S --> e | SS | (S) // L(G) = PAREN
- Now consider the derivations of the string: "()()".
 - $D_1: S \to SS \to (S) S \to ()S \to ()(S) \to ()()$
 - D₂: S-->SS -->S(S) -->(S)(S)-->(S)()-->()()
 - O D₃: S-->SS -->S(S) -->S() -->(S)() -->()()

• Notes:

- D₁ is a leftmost derivation, D₃ is a rightmost derivation while D₂ is neither leftmost nor rightmost derivation.
- o 2. $D_1 \sim D_3$ are the same in the sense that:
 - × The rules used (and the number of times of their applications) are the same.
 - All applications of each rule in all 3 derivations are applied to the same place in the string.
 - More intuitively, they are equivalent in the sense that by reordering the applications of applied rules, they can be transformed to the same derivation.

Parse Trees

D₁ ~ D₃ represent different ways of generating the following parse tree for the string "()()".

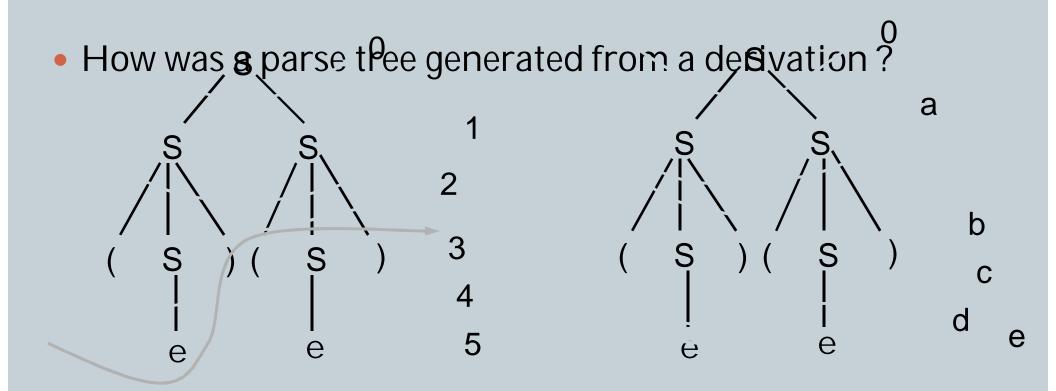


Features of the parse tree:

- 1. The root node is [labeled] the start symbol: S
- 2. The left to right traversal of all leaves corresponds to the input string : () ().
- 3. If X is an internal node and $Y_1 Y_2 ... Y_K$ are an left-to-right listing of all its children in the tree, then X --> $Y_1 Y_2 ...$ Y_k is a rule of G.
- 4. Every step of derivation corresponds to one-level growth of an internal node

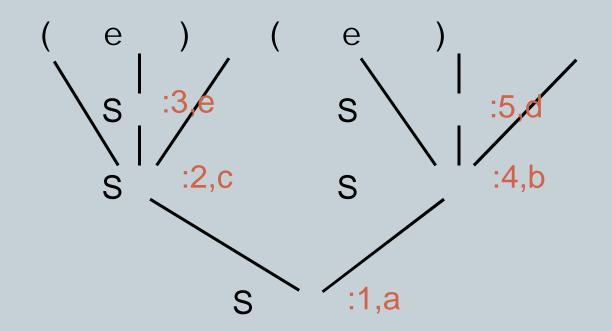
A parse tree for the string "()()".

Mapping derivations to parse tree



Top-down view of $D_1: S -->^* ()()$ and $D_2: S -->^* ()()$.

Bottom-up view of the generation of the parse tree



Remarks:

- 1. Every derivation describes completely how a parse tree grows up.
- 2. In practical applications (e.g., compiler), we need to know not only if a input string $w \in L(G)$, but also the parse tree (corresponding to S -->* w)
- 3. A grammar is said to be *ambiguous* if there exists some string which has more than one parse tree.
- 4. In the above example, '()()' has at least three derivations which correspond to the same parse tree and hence does not show that G is ambiguous.
- 5. Non-uniqueness of derivations is a necessary *but not sufficient* condition for the ambiguity of a grammar.
- 6. A CFL is said to be ambiguous if every CFG generating it is ambiguous.

An ambiguous context free language

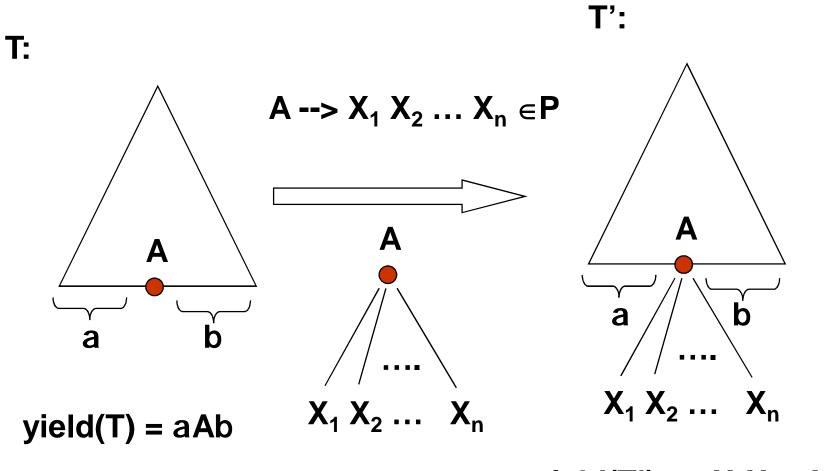
- Let L = {aⁿbⁿc^md^m | n≥1, m≥1} U {aⁿb^mc^mdⁿ | n≥1, m≥
 1}
- It can be proved that the above language is inherently ambiguous. Namely, all context free grammars for it are ambiguous.

Parse trees and partial parse trees for a CFG

- G= (N,S,P,S) : a CFG
- $PT(G) =_{def}$ the set of all parse trees of G, is the set of all trees corresponding to complete derivations (I.e., A -->* w where w \in S*).
- PPT(G) =_{def} the set of all partial parse tree of G is the set of all trees
 corresponding to all possible derivations (i.e.,

A -->* a , where A \in N and a \in (NUS)*).

- The set PPT(G) and PT(G) are defined inductively as follows:
 - 1. Every nonterminal A is a PPT (with root A and yield A)
 - 2. If T = (... A ...) is a PPT where A a nonterminal leaf and T has yield aAb. and A --> $X_1X_2...X_n$ ($n \ge 0$) is a production, then the tree T' = (.... (A $X_1 X_2 ... X_n$) ...) obtained from T by appending $X_1...X_n$ to the leaf A as children of A is a PPT with yield a $X_1...X_n$ b.
 - 3. A PPT is called a partial X-tree if its root is labeled X.
 - 4. A PPT is a parse tree (PT) if its yield is a terminal string.



 $yield(T') = aX_1X_2...X_nb.$

Relations between parse trees and derivations

Lemma 4.1: If T is a partial X-tree with yield a, then X -->*_G a. Pf: proved by ind. on the structure(or number of nodes) of T. Basis: T = X is a single-node PPT. Then a = X. Hence X -->⁰_G a. Ind: T = (... (A b) ...) can be generated from T' = (.... A ...) with yield mAn by appending b to A. Then

 $X \rightarrow^{*}_{G} mAn$ // by ind. hyp. on T'

 $-->_{G}$ mbn // by def. A --> b in P QED.

• Let $D : X \to a_1 \to a_2 \to \dots \to a_n$ be a derivation.

The partial X-tree generated from D, denoted T_D , which has yield(T_D) = a_n , can be defined inductively on n:

1. n = 0: (i.e., D = X). Then $T_D = X$ is a single-node PPT.

2. n = k+1 > 0: let D = [X --> a_1 --> ... --> a_k = aAb -->a X₁...X_m b] = [D' --> a X₁...X_m b]

then $T_D = T_{D'}$ with leaf A replaced by (A $X_1...X_m$)

Relations between parse trees and derivations (cont'd)

Lemma 4.2: $D = X - a_1 - a_2 - a_2 - a_n$ a derivation. Then T_D is a partial X-tree with yield a_n .

Pf: Simple induction on n. left as an exercise.

- Leftmost and rightmost derivations:
- G: a CFG. Two relations
 - ^L-->_G (leftmost derivation),
 - ^R-->_G (rightmost derivation) ⊆ (NUS)⁺ x (NUS)^{*} are defined as follows: For a, b∈ (NUS)^{*}
 - 1. $a \vdash ->_G b$ iff $x \in S^*$, $A \in N$, $g \in (NUS)^*$ and $A \rightarrow d \in P$ s.t.

a = xAg and b = xdg

2. $a \xrightarrow{R} - >_G b \text{ iff } x \in S^*, A \in N, g \in (NUS)^* \text{ and } A \rightarrow d \in P \text{ s.t.}$

a = gAx and b = gdx.

3. define $L_{-->*_G}$ (resp., $R_{-->*_G}$) as the ref. & trans. closure of $L_{-->_G}$ ($R_{-->_G}$).

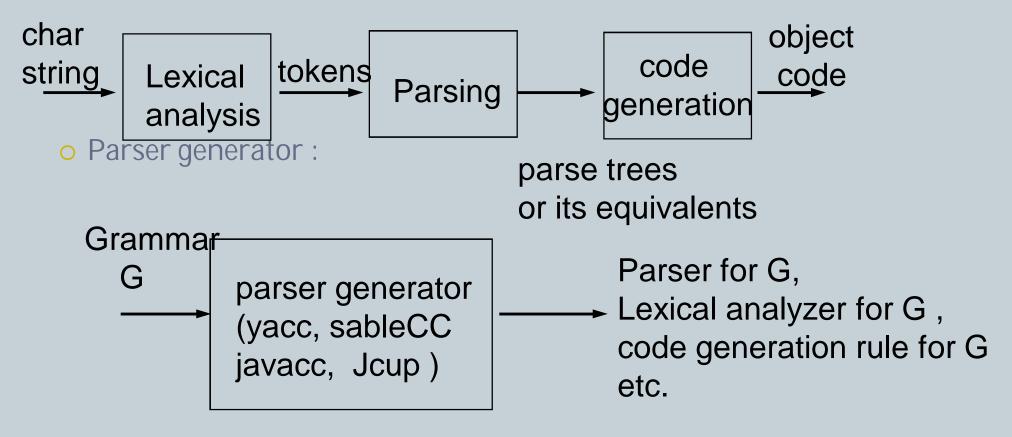
parse tree and leftmost/rightmost derivations

• Ex: S --> SS | (S) | e. Then $(SSS) -->_{G} ((S) SS)$ leftmost $-->_{G}$ (SS(S)) rightmost $-->_{G}$ (S (S) S) neither leftmost nor rightmost Theorem 3 : G; a CFG, A \in N, w \in S^{*}. Then the following statements are equivalent: (a) $A -->_{G}^{*} W$. (b) \$ a parse tree with root A and yield w. (c) \$ a leftmost derivation $A^{L} - > *_{G} W$ (d) $a rightmost derivation A R -->*_G w$ pf: (a) $\checkmark = >$ (b) // (a) <=> (b) direct from Lemma 1 & 2. // (c),(d) ==> (a) : by definition (C) (d) // need to prove (b) ==>(c),(d) only. // left as exercise.

Parsing

• Major application of CFG & PDAs:

- Natural Language Processing(NLP)
- Programming language, Compiler:
- o Software engineering : text 2 structure



Parsing (cont'd)

- Parsing is the process of the generation of a parse tree (or its equivalents) corresponding to a given input string w and grammar G.
- Note: In formal language we are only concerned with if $w \in L(G)$, but in compiler, we also need to know how w is derived from S (i.e., we need to know the parse tree if it exists).
- A general CFG parser:

a program that can solve the problem:x: any input string; G: a CFG

$$x, G \qquad \qquad x \in L(G)? \qquad \qquad yes \\ no$$

The CYK algorithm

- A general CFG parsing algorithm
 - o run in time O($|x|^3$).
 - o using dynamic programming (DP) technique.
 - o applicable to general CFG
 - o but our demo version requires the grammar in Chomsky normal form.
- Example : G =
 - $S \rightarrow AB | BA | SS | AC | BD$
 - A --> a B --> b C --> SB D --> SA

Let x = aabbab, n = |x| = 6.

- Steps: 1. Draw n+1 vertical bars separating the symbols of x and number them 0 to n:
 - | a | a | b | b | a | b |
 - 0 1 3 3 4 5 6

The CYK algorithm (cont'd)

2. /* For each $0 \le i < j \le n$. Let x_{ij} = the substring of x between bar i and bar j.

For each $0 \le i < j \le n$. Let $T(i,j) = \{ X \in N \mid X \dashrightarrow_G x_{ij} \}$. I.e., T(i,j) is the set of nonterminal symbols that can derive the substring x_{ij} .

o note: $x \in L(G)$ iff $S \in T(0,n)$.

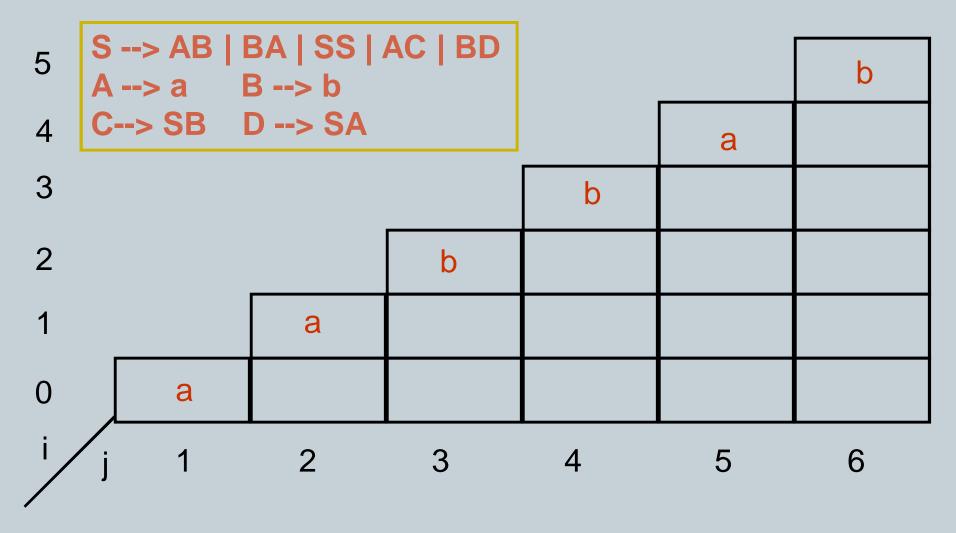
/* The spirit of the algorithm is that the value T(0,n) can be

computed by applying DP technique. */

Build a table with C(n,2) entries as shown in next slide:

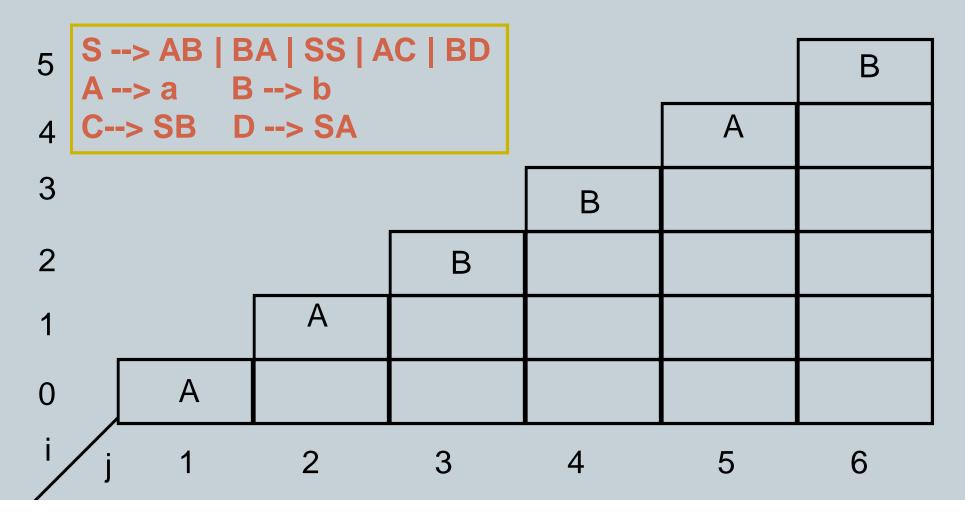
The CYK chart

The goal is to fill in the table with cell(i,j) = T(i,j).
 Problem: how to proceed ?
 ==> diagonal entries can be filled in immediately !! (why ?)



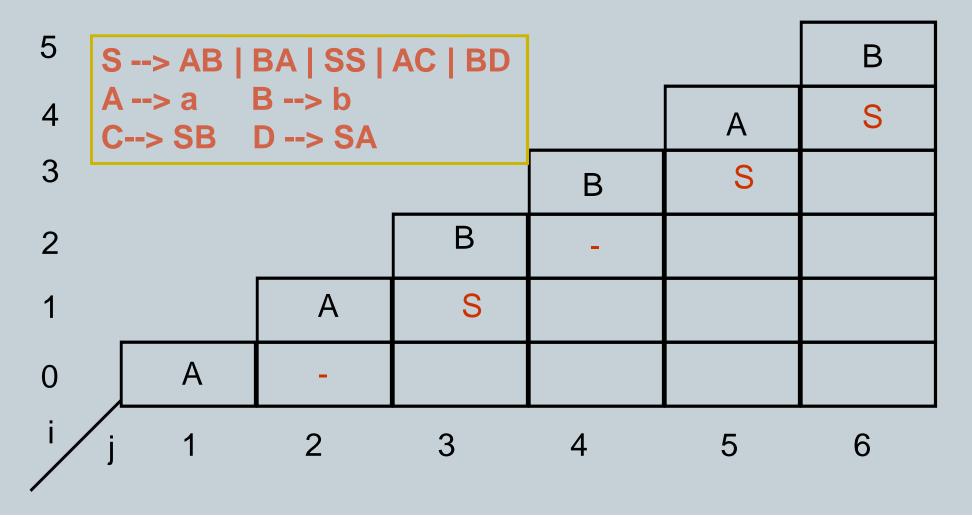
Fill in the CYK chart:

- Why C(4,5) = { A }? since $A \rightarrow a = x_{45}$.
- Once the main diagonal entries were filled in, the next upper diagonal entries can be filled in. (why?)



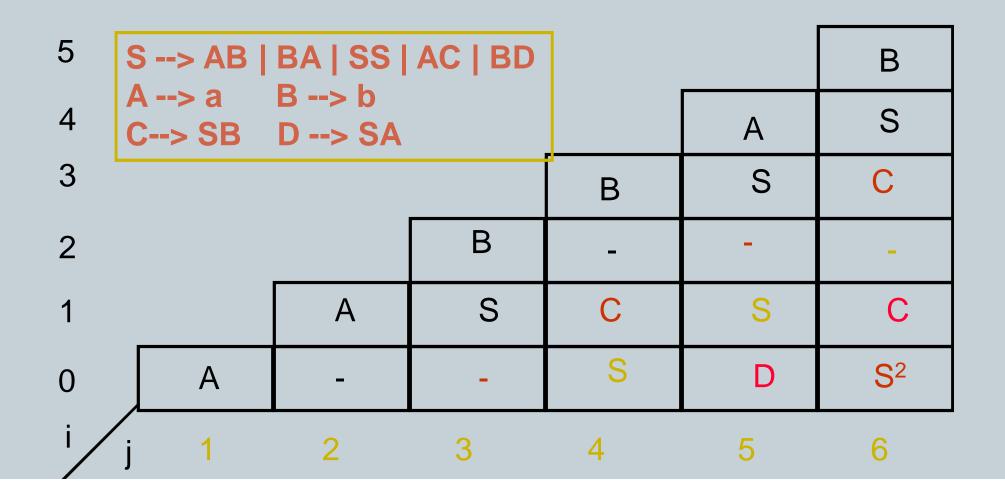
how to fill in the CYK chart

- $T(3,5) = S \text{ since } x_{35} = x_{34} x_{45} < -- T(3,4) T(4,5) = B A < -- S$
- In general T(i,j) = U $_{i < k < j} \{ X \mid X \dashrightarrow Y Z \mid Y \in T(i,k), Z \in T(k,j) \}$



the demo CYK version generalized

- Let $P_k = \{ X --> a \mid X --> a \in P \text{ and } | a | = k \}.$
- Then $T(i,j) = U_{k>0} U_{i=t0 < t1 < t2 < ... < tk < j=t(k+1)} \{ X \mid X \to X_1 X_2 ... X_k \in P_k \text{ and for all } m < k+1 X_m \in T(t_m, t_{m+1}) \}$



The CYK algorithm

```
// input grammar is in Chomsky normal form
1. for i = 0 to n-1 do { // first do substring of length 1
  T(i,i+1) = \{\};
  for each rule of the form A-> a do
    if a = x_{i,i+1} then T(i,i+1) = T(i,i+1) \cup \{A\};
2. for m = 2 to n do // for each length m > 1
   for i = 0 to n - m do{ // for each substring of length m
       T(i, i + m) = \{\};
       for j = i + 1 to i + m -1 do{ // for each break of the string
        for each rule of the form A --> BC do
         If B \in T(i,j) and C \in T(j,i+m) then
              T(i,i+m) = T(i,i+m) \cup \{A\}
```

}}