
P A R S E T R E E S A N D P A R S I N G

Derivations and Parse trees

 G: S --> e| SS | (S) // L(G) = PAREN

 Now consider the derivations of the string: “()()”.
 D1: S--> SS -->(S) S --> ()S --> ()(S) --> ()()

 D2: S-->SS -->S(S) -->(S)(S)-->(S)()-->()()

 D3: S-->SS -->S(S) --> S() -->(S)() --> ()()

 Notes:
 1. D1 is a leftmost derivation, D3 is a rightmost derivation while D2 is

neither leftmost nor rightmost derivation.

 2. D1 ~ D3 are the same in the sense that:
 The rules used (and the number of times of their applications) are the same.

 All applications of each rule in all 3 derivations are applied to the same place
in the string.

 More intuitively, they are equivalent in the sense that by reordering the
applications of applied rules, they can be transformed to the same derivation.

Parse Trees

 D1 ~ D3 represent different ways of generating the
following parse tree for the string “()()”.

S

S

S S

S

e e

(())

A parse tree for the string “() ()”.

Features of the parse tree:
1. The root node is [labeled] the start

symbol: S
2. The left to right traversal of all leaves

corresponds to the input string : () ().
3. If X is an internal node and Y1 Y2 … YK

are an left-to-right listing of all its
children in the tree, then X --> Y1Y2…
Yk is a rule of G.

4. Every step of derivation corresponds
to one-level growth of an internal node

Mapping derivations to parse tree

 How was a parse tree generated from a derivation ?S

S

S S

S

e e

(())

0

a

b
c

d e

Top-down view of D1: S -->* ()() and D2: S -->* ()().

S

S

S S

S

e e

(())

0

1

2

3
4
5

Bottom-up view of the generation of
the parse tree

(e) (e)

S S

S S

S :1,a

:4,b:2,c

:5,d:3,e

Remarks:

1. Every derivation describes completely how a parse tree grows up.

2. In practical applications (e.g., compiler), we need to know not
only if a input string w L(G), but also the parse tree

(corresponding to S -->* w)

3. A grammar is said to be ambiguous if there exists some string
which has more than one parse tree.

4. In the above example, ‘()()’ has at least three derivations which
correspond to the same parse tree and hence does not show that
G is ambiguous.

5. Non-uniqueness of derivations is a necessary but not sufficient
condition for the ambiguity of a grammar.

6. A CFL is said to be ambiguous if every CFG generating it is
ambiguous.

An ambiguous context free language

 Let L = {anbncmdm | n 1, m 1} U {anbmcmdn | n 1, m
1}

 It can be proved that the above language is inherently
ambiguous. Namely, all context free grammars for it are
ambiguous.

Parse trees and partial parse trees for a CFG

 G= (N,S,P,S) : a CFG
PT(G) =def the set of all parse trees of G, is the set of all trees

corresponding to complete derivations (I.e., A -->* w where w
S*) .

PPT(G) =def the set of all partial parse tree of G is the set of all trees
corresponding to all possible derivations (i.e.,
A -->* a , where A N and a (NUS)*).

 The set PPT(G) and PT(G) are defined inductively as follows:
1. Every nonterminal A is a PPT (with root A and yield A)
2. If T = (… A …) is a PPT where A a nonterminal leaf and T has

yield aAb. and A --> X1X2…Xn (n 0) is a production, then the
tree T’ = (…. (A X1 X2 …Xn) …) obtained from T by appending
X1…Xn to the leaf A as children of A is a PPT with yield a X1…Xn
b.

3. A PPT is called a partial X-tree if its root is labeled X.
4. A PPT is a parse tree (PT) if its yield is a terminal string.

A

a b

T:

A --> X1 X2 … Xn P

yield(T) = aAb

A

a b

T’:

….
X1 X2 … Xn

yield(T’) = aX1X2…Xnb.

A

….
X1 X2 … Xn

Relations between parse trees and derivations

Lemma 4.1: If T is a partial X-tree with yield a, then X -->*G a.

Pf: proved by ind. on the structure(or number of nodes) of T.

Basis: T = X is a single-node PPT. Then a = X. Hence X -->0
G a.

Ind: T = (… (A b) …) can be generated from T’ = (…. A …) with
yield mAn by appending b to A. Then

X -->*G mAn // by ind. hyp. on T’

-->G mbn // by def. A --> b in P QED.

 Let D : X --> a1 --> a2 --> … --> an be a derivation.

The partial X-tree generated from D, denoted TD, which has yield(TD)
= an, can be defined inductively on n:

1. n = 0 : (i.e., D = X). Then TD = X is a single-node PPT.

2. n = k+1 > 0: let D = [X --> a1 --> … --> ak = aAb -->a X1…Xm b]
= [D’ --> a X1…Xm b]

then TD = TD’ with leaf A replaced by (A X1…Xm)

Relations between parse trees and
derivations (cont’d)

Lemma 4.2: D = X --> a1 --> a2 --> … --> an a derivation. Then

TD is a partial X-tree with yield an.

Pf: Simple induction on n. left as an exercise.

 Leftmost and rightmost derivations:

 G: a CFG. Two relations
 L-->G (leftmost derivation),

 R-->G (rightmost derivation) (NUS)+ x (NUS)* are defined as
follows: For a,b (NUS)*

1. a L-->G b iff $ x S*, A N, g (NUS)* and A --> d P s.t.

a = xA g and b= x d g.
2. a R-->G b iff $ x S*, A N, g (NUS)* and A --> d P s.t.

a = gA x and b= gd x .

3. define L-->*G (resp., R-->*G) as the ref. & trans. closure of
L-->G (R-->G) .

parse tree and leftmost/rightmost derivations

 Ex: S --> SS | (S) | e. Then

(SSS) -->G ((S) SS) leftmost

-->G (SS(S)) rightmost

-->G (S (S) S) neither leftmost nor rightmost

Theorem 3 : G; a CFG, A N, w S*. Then the following
statements are equivalent:

(a) A -->*G w.

(b) $ a parse tree with root A and yield w.

(c) $ a leftmost derivation A L-->*G w

(d) $ a rightmost derivation A R-->*G w

pf: (a) <==> (b) // (a) <==> (b) direct from Lemma 1 & 2.

// (c),(d) ==> (a) : by definition

(c) (d) // need to prove (b) ==>(c),(d) only.

// left as exercise.

Parsing

 Major application of CFG & PDAs:
 Natural Language Processing(NLP)

 Programming language, Compiler:

 Software engineering : text 2 structure

 Parser generator :

Lexical
analysis

Parsing
code

generation

char
string tokens

parse trees
or its equivalents

object
code

parser generator
(yacc, sableCC
javacc, Jcup)

Grammar
G Parser for G,

Lexical analyzer for G ,
code generation rule for G
etc.

Parsing (cont’d)

 Parsing is the process of the generation of a parse tree (or
its equivalents) corresponding to a given input string w
and grammar G.

Note: In formal language we are only concerned with if w
L(G), but in compiler , we also need to know how w is
derived from S (i.e., we need to know the parse tree if it
exists).

 A general CFG parser:
 a program that can solve the problem:

 x: any input string; G: a CFG

x, G
x L(G) ?

yes

no

The CYK algorithm

 A general CFG parsing algorithm
 run in time O(|x|3).

 using dynamic programming (DP) technique.

 applicable to general CFG

 but our demo version requires the grammar in Chomsky normal form.

 Example : G =

S --> AB | BA | SS | AC | BD

A --> a B --> b C --> SB D --> SA

Let x = aabbab, n = |x| = 6.

Steps: 1. Draw n+1 vertical bars separating the symbols of x
and number them 0 to n:

| a | a | b | b | a | b |

0 1 3 3 4 5 6

The CYK algorithm (cont’d)

2. /* For each 0 i < j n. Let xij = the substring of x
between bar i and bar j.

For each 0 i < j n. Let T(i,j) = { X N | X --> G xij }.
I.e., T(i,j) is the set of nonterminal symbols that can
derive the substring xij .
 note: x L(G) iff S T(0,n).

/* The spirit of the algorithm is that the value T(0,n) can
be

computed by applying DP technique. */

Build a table with C(n,2) entries as shown in next slide:

The CYK chart
 The goal is to fill in the table with cell(i,j) = T(i,j).

Problem: how to proceed ?

==> diagonal entries can be filled in immediately !! (why ?)

1 2 3 4 5 6

5

4

3

2

1

0

ji

a

a

b

b

a

b
S --> AB | BA | SS | AC | BD
A --> a B --> b
C--> SB D --> SA

Fill in the CYK chart:

 Why C(4,5) = { A } ? since A --> a = x45.

 Once the main diagonal entries were filled in, the next upper
diagonal entries can be filled in. (why ?)

1 2 3 4 5 6

5

4

3

2

1

0

ji

A

A
B

B

A

BS --> AB | BA | SS | AC | BD
A --> a B --> b
C--> SB D --> SA

how to fill in the CYK chart
 T(3,5) = S since x35 = x34 x45 <-- T(3,4) T(4,5) = B A <-- S

 In general T(i,j) = U i < k < j { X | X --> Y Z | Y T(i,k), Z
T(k,j)}

1 2 3 4 5 6

5

4

3

2

1

0

ji

A

A

B
B

A

-

S

-

S

S

BS --> AB | BA | SS | AC | BD
A --> a B --> b
C--> SB D --> SA

the demo CYK version generalized

 Let Pk = { X --> a | X --> a P and | a | = k }.

 Then T(i,j) = U k > 0 U i =t0 < t1 < t2 < …< tk < j =t (k+1) { X | X -> X1 X2…Xk

 Pk and for all m < k+1 Xm T(tm, tm+1) }

1 2 3 4 5 6

5

4

3

2

1

0

ji

A

A

B
B

A

-

S

-

S

S

B

-

C

-

C

S

S

-

D

C

S2

S --> AB | BA | SS | AC | BD
A --> a B --> b
C--> SB D --> SA

The CYK algorithm

// input grammar is in Chomsky normal form
1. for i = 0 to n-1 do { // first do substring of length 1

T(i,i+1) = {};
for each rule of the form A-> a do

if a = x i,i+1 then T(i,i+1) = T(i,i+1) U {A};
2. for m = 2 to n do // for each length m > 1

for i = 0 to n - m do{ // for each substring of length m
T(i, i + m) = {};
for j = i + 1 to i + m -1 do{ // for each break of the string

for each rule of the form A --> BC do
If B T(i,j) and C T(j,i+m) then

T(i,i+m) = T(i,i+m) U {A}
}}

